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Summary

The performance of remote sounding radiometers measuring properties of the Earth’s atmosphere is
analysed through a multiresolution wavelet transform. This technique allows the uncertainty in retrieved
atmospheric profiles to be determined as a function of both altitude and scale of patterns in the profile.
Multiresolution analysis may be applied to a number of indicators of the quality of a measurement
including entropic information. The apportionment of performance indicators to specific altitude ranges
and pattern scales facilitates a comparison with performance requirements. The analysis is illustrated
through a simple model of a remote sounding radiometer and by application to the Infrared Atmospheric
Sounding Interferometer.

Keywords: Atmosphere Entropy Information theory Infrared Atmospheric Sounding In-
terferometer (IASI) Multi-resolution Radiometry Remote sensing Remote sounding Retrieval
Wavelet

1. Introduction

Temperature and composition profiles of the Earth’s atmosphere have been measured
almost continuously by a succession of space-borne radiometers following Kaplan’s (1959)
description of this technique. Similar instruments have been mounted on aircraft, ground
platforms and planetary probes (Houghton and Taylor 1973; Houghton et al. 1984).
Remote measurements from spacecraft have the advantage of continuous global coverage
so that they have become an established part of the world weather monitoring system
in spite of their poor vertical resolution compared with in-situ measurements. A new
generation of instruments with higher spectral resolution and wider spectral coverage
has been designed to provide improved vertical resolution (Smith et al. 1990; Aumann
and Pagano 1994; Simeoni et al. 1997).

Although it has been recognised since the work of Backus and Gilbert (1970) that the
achievable resolution must be balanced against noise in the retrieved profile, there appears
to be no generally agreed definition of resolution. This leads to difficulty in defining and
interpreting performance requirements. An unambiguous measure of performance is the
probability of error in detecting prescribed structures in the atmospheric profile in the
presence of measurement noise (Prunet et al. 1998; Lee 1998b,c). Global measures such
as the degrees of freedom for signal (Wahba 1985) and Shannon’s entropic information
(Shannon 1949) give no detail about the distribution of performance over altitude and
scale. Purser and Huang (1993) addressed this problem by deriving an effective data
density over altitude and later a density of entropic information (Huang and Purser 1996).
Here I show that, by means of a multiresolution wavelet transform, global measures of
performance may be distributed over both altitude and scale of pattern in the atmospheric
profile. Performance requirements match naturally to such a decomposition.
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2. Retrieval of the atmospheric state

A remote sensing radiometer measures the radiances emitted by the atmosphere in a
number of spectral bands or channels. The vector y representing the radiances measured
by N channels is related to the atmospheric state specified by the M dimensional vector
x through a forward model y = f(x) + e. Here the vector e includes the errors of mea-
surement and errors arising through uncertainties in the model. In a linear approximation
about some state x0

y = Kx + e (1)

where K is the Jacobian matrix with elements [K]ij = ∂fi/∂xj evaluated at x = x0 and x
is now measured from x0 and y from y0 = f(x0). The atmospheric state vector includes
all atmospheric parameters which are to be retrieved from the measurements. Typically x
will include, as a minimum, atmospheric temperatures and water vapour concentrations
tabulated over a range of altitudes (the components of x will be assumed to be in order of
increasing altitude with composition profiles appended to the temperature profile). For
simplicity in this paper I consider only temperatures, but the extension to water vapour
concentrations is straightforward.

The statistical method for retrieving an estimate of the atmospheric state from
the measurements y and a prior estimate xb of x has been described by many authors
(e.g. Wark and Fleming 1966; Rodgers 1976; Menke 1984; Rodgers 2000). If all random
vectors have multivariate normal distributions, the most probable value of x after the
measurement is xa where

xa − xb = AKTE−1(y −Kxb) (2)

A−1 = B−1 + KTE−1K (3)

Here A is the covariance† of x after the measurement, E is the covariance of the measure-
ment and forward model error e and B is the covariance of x before the measurement.
The post measurement probability distribution of x is

NM (x− xa,A) = (2π)−M/2|A|−1/2 exp

{
−

1

2
(x− xa)TA−1(x− xa)

}
(4)

where |A| denotes the determinant of A. The measurement error distribution is NN(e,E)
(e is unbiased) and the probability distribution of x before the measurement is NM (x−
xb,B). Equations 2 and 3 apply if the measurement errors are statistically independent
of the prior estimate of the atmospheric state.

The retrieval process described above is referred to as assimilation when the prior
estimate is from a numerical weather model and the measurements are being used to
update the model. The statistical retrieval method gives consistent results when applied
sequentially. The set of measurements may be divided into two statistically indepen-
dent subsets and an intermediate estimate made by assimilating only the first subset.
This intermediate estimate and its covariance may be used as the prior estimate for the
assimilation of the second subset. The resulting final estimate and its covariance are
identical to the results which would have been obtained by assimilating the complete set
of measurements in one application of equations 2 and 3.

† Notation is summarised in appendix A. Vectors are denoted by bold lower case letters and matrices
by bold upper case letters.
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3. The resolution matrix

Many authors have used measures of resolution based on the resolution matrix R.
Conrath (1972) applied methods developed by Backus and Gilbert (1970) in the context
of sounding the solid earth to the atmospheric sounding problem. The change in the
estimated atmospheric profile xa caused by a perturbation x in the true profile is given
in a linear approximation by

〈xa〉e = R x (5)

where 〈· · ·〉e is an ensemble average over measurement noise. The spread of significant
elements in the rows of the matrix R determines the range of altitudes over which the
true profile is averaged in the estimate xa. The requirement that this spread should be
small conflicts with the requirement that the variances of the retrieved values arising
from measurement noise should also be small. A compromise may be made by choosing
retrieval coefficients to minimise a weighted sum of the spread and the variance. By
changing the weights, a trade-off curve may be plotted of variance vs. resolution.

In the statistical method outlined in section 2, this trade-off is determined by the
relative values of prior and measurement covariance matrices and an unambiguous value
for R is obtained. The measurement noise is supposed unbiased so that 〈y〉e = Kx. For
a given prior estimate xb

〈xa〉e = A KTE−1K (x− xb) + xb (6)

= Rx + (I−R)xb (7)

where I is the unit matrix and

R = A KTE−1K =
(
B−1 + KTE−1K

)−1
KTE−1K (8)

Measures of the spread of significant elements in the rows of R have been used to estimate
the resolution of the retrieval (Conrath 1972; Menke 1984), but some authors (Thompson
1982; Huang et al. 1992) have reported difficulties with this approach. Purser and Huang
(1993) reviewed a number of formulae to measure the spread, but found none of them
to be satisfactory. Plots of spreads vs. a signal-to-noise parameter (Purser and Huang
figure 5) showed significant disagreement between the different formulae, particularly in
the asymptotic behaviour for small signal-to-noise values. It is difficult to devise spread
formulae which give meaningful measures of resolution in the case that R contains sig-
nificant negative elements, and there is no general agreement as to which formula to
adopt.

A general problem with using any measure of the spread of rows of R as an estimate
of the resolution, where R is defined by equation 8, may be highlighted by considering the
case of large measurement noise∗. The rows of Conrath’s R (equation 5) are normalised
so that

∑
j [R]ij = 1, but it is clear from equation 8 that row sums using this definition

decrease with increasing measurement noise. Let E be replaced by εE′ then, in the limit
as ε→∞

R→ ε−1B KTE′
−1

K (9)

The spreads of the rows of R, being independent of the scalar multiplier ε−1, have well
defined values which depend on K. However, as the retrieved profile in this limit is the
prior profile, with no contribution from the measurements, what do the spreads measure?

∗ This was drawn to my attention by Lee (1998a).
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Thompson (1982) introduced an empirical resolution by considering the retrieval of
two adjacent gaussian perturbations in the atmospheric temperature profile. He investi-
gated the separability of the peaks in the retrieved profile by comparing the size of the
dip between them with the retrieval error. This approach avoids the problems associated
with spread functions and the resolution matrix. Statistical tests of the detectability of
perturbations in the atmospheric temperature profile are discussed in section 6.

4. Degrees of freedom for signal

Purser and Huang (1993) base their analysis on the degrees of freedom for signal
(DFS). This global quantity indicates the number of effectively independent pieces of
information provided by the measurement. The DFS is the trace of R as defined by
equation 8.

DFS = tr (R) (10)

The DFS has many desirable properties (Wahba 1985) such as independence of the
units or coordinate transformations. It shares the property of information measures that
the sum of the DFSs for two sets of independent measurements is never less than the
individual DFSs and never more than their sum. Although the DFS is derived from the
resolution matrix, the magnitudes of the elements are not normalised as in the spread
formulae and the DFS correctly tends to zero in the large noise limit (equation 9).

Purser and Huang noted that the diagonal elements of R apportion the DFS to
particular altitudes and so were able to define an effective data density over altitude.
This important idea forms the basis of the analyses presented in this paper. However,
the data density is not an indication of resolution; a high value might indicate an ability
to measure over a wide range of resolutions with moderate precision, but could equally
indicate an ability to measure only at low resolution but with high precision. In this
paper I show that this ambiguity may be removed by a transformation of coordinates
which allows the DFS and other global performance measures to be apportioned over
both altitude and scale of structure.

5. Radiometer models

Theoretical results will be illustrated through their application to two radiometer
models.

(a) Ideal radiometer model.

The upwelling radiance at the top of the atmosphere may be written as a weighted
integral of the Planck function over height. A simple form for the weighting functionKi(p)
for radiometer channel i may be derived for the case of a monochromatic measurement
in the wings of a pressure broadened line (Houghton et al. 1984).

Ki(p) =
2

h0

(
p

pi

)2

exp

{
−

(
p

pi

)2
}

(11)

This function peaks at atmospheric pressure p= pi. With scale height h0 and surface
pressure ps, the vertical coordinate h is given by h=−h0 ln(p/ps) . The value h0 = 7 km
corresponds to an atmospheric temperature of about 240 K, an average temperature for
the lower 40 km, making h approximately equal to the altitude in km. The weighting func-
tion is normalised so that

∫∞
−∞ K dh= 1. At millimetre wavelengths, the Planck function
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is approximately proportional to temperature and equation 1 arises on evaluating the
integral over height by numerical quadrature. If the atmosphere over the altitude range
0–40 km is represented by profiles tabulated at 64 regularly spaced points so that the
tabulation interval is 0.625 km, the elements of the Jacobian matrix K are

[K]ij =
1

5.6
exp

{
− exp

(
hi − j

5.6

)
+
hi − j

5.6

}
(12)

The peak altitudes hi for 10 functions were spread evenly over the 64 tabulation points
with

hi = 3.2, 9.6, 16.0, 22.4, 28.8, 35.2, 41.6, 48.0, 54.4, 60.8 (13)

The peak separation is 6.4 tabulation intervals or 4 km. This distribution of the weight-
ing functions is roughly equivalent to that for the Advanced Microwave Sounder Unit
(AMSU)(Patel and Mentall 1993). No allowance was made for radiation from the Earth’s
surface or from the atmosphere above 40 km. Measurements were assumed to be inde-
pendent with standard deviation 0.3 K so that E is diagonal with all diagonal elements
equal to 0.09 K2.

(b) IASI model.

The Infrared Atmospheric Sounding Interferometer (IASI) (Diebel et al. 1996) covers
the spectral range from 645 cm−1 (15.5µm) to 2760 cm−1 (3.62µm) with an approximate
spectral resolution of 0.35 cm−1 unapodised and 0.5cm−1 apodised. I am indebted to
A. C. L. Lee of the UK Meteorological Office for supplying the matrix KTE−1K for
IASI. Radiometric calculations used a fast radiative transfer code RTIASI (Matricardi
and Saunders 1999) developed by the European Centre for Medium Range Forecasting
(ECMWF). The Floyd atmospheric profile (appendix B) was used as a basis for evaluating
the temperature derivatives constituting the Jacobian matrix K. The Gaussian apodised
Jacobians output by the RTIASI code were unapodised (Lee 1999). The noise equivalent
temperature for the self-apodised spectrum was that presented by Cayla (1996) at the
Cannes meeting of the IASI Sounding Working Group held in March 1997. A diagonal
forward modelling error variance of 0.04 K2 was added to all channels.

The RTIASI code uses 43 pressure levels which are listed in appendix B. Elements
in the rows of K were interpolated onto the 64 levels equally spaced in ln(p) used in this
paper. Each element was divided by the average thickness of the adjacent layers before
cubic interpolation.

6. The detectability of atmospheric perturbation patterns

Consider the probability of error in detecting the presence or absence of a particular
structure in the atmospheric profile. Let v be a unit magnitude perturbation pattern and
let α be the projection of the atmospheric state onto this pattern so that α= vTx. The
prior standard deviation σb of α and the post measurement standard deviation σa are
given by

(σb)2 = vTBv (σa)2 = vTAv (14)

Prunet et al. (1998) advocated using the ratio of post measurement to prior variances
as a performance indicator (their σa in my notation is σa/σb with their δx equal to
my Bv). Whilst Prunet et al. considered perturbation patterns derived from particular
meteorological situations, Lee (1998b; 1998c) suggested the use of ‘double Dirac’ patterns
which are identical to Haar wavelets illustrated in figure 1 and described in appendix C.
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He argues that a perturbation pattern which is to be used to determine the resolution of
an instrument should have zero mean value. Such a pattern is detected through its first
moment and the sloping edges of the weighting functions (rows of K). The Haar wavelet
is the simplest such pattern and this is the perturbation pattern used in the remainder of
this paper although similar results would be expected using other wavelets with non-zero
first moments (Burrus and Gopinath 1998).

Consider the problem of deciding between two mutually exclusive hypotheses – pat-
tern xp present or pattern xq present (one of these may be the null pattern). Given
a measurement y, a strategem for deciding between the hypotheses is to divide the N
dimensional vector space of the measurements into two regions, P and Q and to choose
xp present if y ∈ P and xq present if y ∈ Q. Let the probability of deducing xp present
when the true pattern is xq be PE(p|q). In the case that PE(p|q) = PE(q|p) = PE , the
error probability PE is minimised when P includes all points where NN(y −Kxp,E)>
NN(y −Kxq,E) and Q points where NN(y −Kxp,E)≤NN(y −Kxq, E). The discrimi-
nator or boundary between P and Q is a hyper-plane and

PE =

∫
Q

NN(y −Kxp, E) d
N
y =

∫
P

NN(y −Kxq, E) d
N
y (15)

=
1
√

2π

∫ ∞
∆/2

e−t
2/2 dt (16)

where ∆2 is the Mahalanobis distance between the patterns (Wald 1944; Anderson 1971)
defined by

∆2 = (xp − xq)TKTE−1K(xp − xq) (17)

A maximum permissible value for PE implies a minimum permissible Mahalanobis dis-
tance (for example for PE ≤ 0.05, ∆min = 3.2897). As an example figure 1 shows the
minimum amplitude in degrees K of a profile perturbation in the form of a Haar wavelet
which is to be detected with less than 5% probability of error. The minimum amplitude
a is plotted as a function of the altitude h of the center of the perturbation for wavelet
half-widths w = 5, 2.5, 1.25 and 0.625 km. Calculations were for both the ideal radiome-
ter model (section 5 (a)) and for IASI (section 5 (b)). For the ideal radiometer model, an
expression for the minimum amplitude a as a function of half-width w may be found by
averaging the Mahalanobis distance ∆2 over height with an atmosphere deep enough to
avoid boundary effects. The averages were evaluated by integration over the continuous
weighting functions described by equation 11 and are marked on the top and bottom
axes in figure 1.

a′2 = ∆2
minh

′
δ {4 ln cosh(w′)− ln cosh(2w′)}

−1
(18)

≈ ∆2
minh

′
δ

1

w′4
for w′� 1 (19)

Equation 18 is in terms of the dimensionless variables a′ = a/ε, h′δ = hδ/h0 and w′ =
w/h0 where E = ε2 I, hδ is the altitude separation of the weighting functions and h0 is
the scale height (for figure 1 ε= 0.3 K, ∆min = 3.2897, hδ = 4 km and h0 = 7 km). For
small values of w, the instrument responds to the first moment aw2 of the perturbation
(equation 19 gives values of a accurate to 10% for w′ < 0.41). Equation 18 shows how
the minimum amplitude for detection depends on properties of the instrument and of
radiative transfer in the atmosphere. However this equation is based on an idealised
model with equally spaced, identically shaped weighting functions. Many absorption lines
contribute to the absorption at most wavelengths and the assumption that the absorption
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Figure 1. The Haar wavelet and minimum amplitudes for at least 95% certainty of detection. Ampli-
tudes are plotted as a function of height for IASI (sloping lines) and for the ideal radiometer model
(vertical lines). Average values for the ideal radiometer calculated using equation 18 are marked on the

top and bottom axes.

coefficient varies as the square of atmospheric pressure implicit in equation 12 is true only
in the wings of a single isolated line. The simple model may be improved to some extent
by using an absorption coefficient proportional to pβ with β < 2. Equation 11 becomes
Ki(p) = (β/h0)(p/pi)

β exp[−(p/pi)
β ] resulting in a wider weighting function. Equation 18

is then modified by substituting 2h0/β for h0 in the definitions of h′δ and w′. Although
equations 18 and 19 give insight into how the minimum detectable amplitude depends
on model parameters, generally it is not practical to estimate these parameters for a
radiometer such as IASI.

The minimum detectable amplitudes for IASI are about a factor 40 smaller than
those for the ideal radiometer in the troposphere, but increase through the stratosphere
to reach comparable values by 40 km altitude. This reflects the high density of IASI
channels with weighting functions peaking in the troposphere. Up to 7.5 km altitude the
minimum amplitude a for a wavelet with half-width w = 1 km to be detected with at
least 95% certainty is 0.9 K. Prunet et al. (1998) refering to IASI conclude that ‘fine
scale structures with a vertical resolution of 1 km are estimated with standard deviation
0.7 K’. For a cumulative normal distribution, the corresponding amplitude for detection
with 95% certainty is 1.2 K. Since Prunet et al.’s ‘fine scale structure’ is not a Haar
wavelet, this agreement is surprisingly close.

The requirement for a minimum probability of error in detecting the presence of a
pattern in the atmospheric profile may be generalised to the detection of any standardised
linear combination of a set of L patterns forming the columns of an M × L matrix X.
For any L-dimensional unit vector u

uTXTA−1Xu≥∆2
min (20)

Let Λ be the diagonal matrix of the eigenvalues of XTA−1X and the columns of U its



2940 G. E. PECKHAM

eigenvectors∗. Then

uTXTA−1Xu = uTUΛUTu = u′
T
Λu′ =

L∑
i=1

[u′]
2
i λi (21)

where u′ = UTu is another L-dimensional unit vector and λi are the eigenvalues of
XTA−1X. Inequality 20 is satisfied for every unit vector u′ if and only if the minimum
eigenvalue λmin satisfies

λmin ≥∆2
min (22)

The problem of detecting one of many possible patterns which may be simultane-
ously present does not have a simple solution comparable with equations 16 and 17.
However, in the case that the patterns are closely spaced, the probability of a correct
choice is maximised by maximising the probability densities at their mean values; that
is by minimising |A|, the determinant of the post-measurement covariance matrix. This
is equivalent to maximising the entropic information H (section 8).

7. Multiresolution analysis

It was noted in section 4 that global performance measures such as the DFS are un-
affected by orthogonal coordinate transformations. For instance a complete orthonormal
M dimensional set is formed by vectors whose i th components are

√
2/M cos(2πni/M)

and
√

2/M sin(2πni/M) for n= 1, 2, . . . , (M/2)− 1, together with vectors with com-

ponents
√

1/M and
√

1/M(−1)i. If these vectors are used as the columns of an orthogo-
nal matrix V, the coordinate transform w = VTx constitutes a spatial Fourier transform
of the atmospheric state x, each component of w giving the amplitude of a Fourier com-
ponent. Recalling that the diagonal elements of the resolution matrix R apportioned the
DFS over altitude (section 4), it is clear that the diagonal elements of the transformed
resolution matrix VTRV apportion the DFS over spatial frequencies. The global DFS
is unchanged by the transformation since DFS = tr(R) = tr(VTRV). The Fourier trans-
form gives information about resolution (spatial frequencies), but all information about
altitude is lost.

Wavelets have both position (altitude) and scale. By transforming to a wavelet basis,
it is possible to apportion global performance measures such as the DFS simultaneously
over both altitude and scale giving information about the resolution as a function of
altitude.

Consider a set of unit vectors which are scaled versions of the Haar wavelet shown
in figure 1. The combination of wavelet altitude h and width w for each vector may be
chosen so that a set of M − 1 such vectors, together with a vector each component of
which is equal to

√
1/M , form a complete orthonormal set. Details of these Haar wavelet

vectors are described in appendix C, but the following analysis is not specific to the
Haar wavelet; many other types have been proposed (Burrus and Gopinath 1998). The
wavelet vectors form columns of an orthogonal transformation matrix V. The vector w
of wavelet amplitudes where

w = VTx (23)

constitutes a multiresolution analysis of the atmospheric state. Each component of w
quantifies the contribution to x of the pattern described by the corresponding wavelet
which is characterised by particular values of altitude h and width w.

∗ Prior information has been included here so that A−1 replaces KTE−1K in equation 17.
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This transformation could be applied to R to give a multiscalar analysis of the
DFS. However, in the next section it will be shown that Shannon’s entropic information
gain H is an appropriate global performance measure for remote sounding radiometers.
Multiresolution analysis will be applied to H in section 9.

8. Information measures

The Kullback-Leibler entropy G (Kullback 1978) is a measure of the information in
favour of an hypothesisH1 againstH2. If the probability distribution of the measurements
under hypothesis Hi is Pi(y)

G=

∫
P1(y) log

P1(y)

P2(y)
d
N
y (24)

The logarithms in information expressions may have base 2 to give information in bits
or base e to give information in natural units∗. Let H1 correspond to the case that the
atmospheric profile is perturbed by an amount x so that P1(y) = Pe(y −Kx) where
Pe(y) = NN(y, E), the distribution of measurement errors. Consider the following two
cases for H2:

Case A: The atmospheric profile is unperturbed so that P2(y) = Pe(y). Then from equa-
tion 24

G=
log(e)

2
xTKTE−1Kx =

log(e)

2
∆2 (25)

where ∆2 is the Mahalanobis distance described in section 6. The average information
〈G〉x over perturbations distributed as Pb(x) = NM(x,B) is

〈G〉x =

∫
Pb(x)G d

M
x =

log(e)

2
tr
(
BKTE−1K

)
(26)

Here KTE−1K is the Fisher information matrix† associated with the measurement of
the atmospheric profile.

Case B: The atmospheric profiles are randomly perturbed with distribution Pb(x) =

NM(x,B) so that P2(y) =
∫
Pb(x)Pe(y −Kx) d

M
x = NN(y, E + KBKT). The average

Kullback-Leibler information is then

〈G〉x =

∫
Pb(x) G d

M
x

=

∫ ∫
Pb(x)Pe(y −Kx) log Pe(y −Kx) d

M
x d

N
y

−

∫ ∫
Pb(x)Pe(y −Kx) log P2(y) d

M
x d

N
y

=

∫
Pe(y) log Pe(y) d

N
y −

∫
P2(y) log P2(y) d

N
y

= H (27)

Here H is the Shannon entropic information gain for the measurement (Shannon 1949;

Lindley 1956). For the normal probability distributions assumed hereH = 1
2 log |E+KBKT|

|E|

∗ Logarithms in information expressions which may have base 2 or e will be written as ‘log’. Elsewhere
logarithms have base e and are written ‘ln’.
† The (i, j) th element of the Fisher information matrix (Fisher 1956) is

∫
1
P1

∂P1
∂xi

∂P1
∂xj

d
N
y.
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which may be written H = 1
2 log |B||A| where B is the prior atmospheric covariance ma-

trix and A is the covariance matrix after the measurement‡.

An analysis of radiometer performance using Fisher information (case A above)
would be similar to the analysis already undertaken in section 6. In this case the in-
strument is being used to distinguish between only two possible atmospheric profiles.
Case B applies to the more realistic requirement to detect the presence of one particular
perturbation profile in a more generally perturbed atmosphere.

A simple argument relates Shannon’s information gain to probabilities for the mul-
tivariate normal distributions considered here. Suppose that the profiles to be detected
form a closely spaced rectangular lattice in the M -dimensional vector space of x. If the

volume of a cell of this lattice is δ
M
x, the post measurement probability of correctly

identifying a profile is P a where

lim
δ
Mx→0

P a = δ
M
x NM(0,A)∝ δ

M
x |A|−1/2 (28)

The ratio of the post measurement P a to the prior P b probability of correct identification
remains finite in the limit and the logarithm of this ratio is equal to Shannon’s information
gain.

lim
δMx→0

log
P a

P b
=

1

2
log
|B|

|A|
=H (29)

A relationship between Shannon’s information and the variance of the principal
components is derived in appendix D.

Shannon’s information gain was introduced by Peckham (1974) as a measure of the
quality of remote sensing measurements and was used by Eyre (1990) in a simulation
study of satellite sounding systems.

9. Multiresolution information

Multiresolution analysis may be applied to the resolution matrix (section 4), to
Fisher information or to Shannon’s entropic information (section 8). Information, like
the DFS, may be expressed as the trace of a matrix so distributing information over the
coordinates. Huang and Purser (1996) used the fact that the logarithm of the determinant
of a matrix is equal to the trace of the matrix logarithm∗ to express the information gain
H as the trace of an information gain matrix. This allowed them to define an information
density over altitude.

H = tr(HHP) (30)

where

HHP =
1

2
log(BA−1) (31)

The diagonal element [HHP]ii is the information gain attributable to the altitude corre-
sponding to the i th component of the atmospheric state vector. It is preferable to work
with the matrix H defined by

H =
1

2
{log(B)− log(A)} (32)

‡ Substituting for A from equation 3, the two forms for H are equivalent if |I + BKTE−1K|= |I +
E−1KBKT |. This is a special case of the determinant identity |I + XY|= |I + YX| where X is M ×N
and Y is N ×M (see, for example, Gantmacher 1959).
∗ The logarithm of a square matrix may be found by replacing the eigenvalues by their logarithms in an
eigenvalue expansion of the matrix (Golub and Van Loan 1996).
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Figure 2. Wavelet components of the multiresolution information gain. The vertical scale covers the
altitude range from 0–40 km. The horizontal scales are information gain in binary units (bits). The
left-hand graph (a) is based on a diagonal prior covariance matrix. The right hand graph (b) is for the
non-diagonal prior covariance described by equation 35. The information gain for both the simple model
and for IASI described in section 5 is plotted. The vertical dotted line in graph (a) shows the information
gain for a simplified measurement in which all components are measured with 1 K standard deviation

noise.

as, although both forms preserve the additivity of total information, only H preserves the
additivity of information separately for each diagonal element. For non-commuting matri-
ces H 6= HHP although tr(H) = tr(HHP). Huang and Purser distributed information gain
over altitude but not over scales of patterns in the atmospheric profile. A multiresolution
wavelet transform allows information to be distributed over both altitude and scale. The
covariances transform to VTAV and VTBV. The total information gain H , which is
unchanged by this transformation, may be expressed as the trace of a multiresolution
information gain matrix.

H = tr
(
HW

)
(33)

where

HW =
1

2

{
log(VTBV)− log(VTAV)

}
=

1

2
VT {log(B)− log(A)}V (34)

The diagonal element [HW]ii represents the information gain at the altitude and scale of
the wavelet forming the i th column of V.

Equation 34 was used to calculate the multiresolution information gain for the two
models described in section 5. The diagonal elements [HW]ii are plotted in figure 2, as
described in the caption, for wavelet levels j = 2–5 corresponding to half widths w = 5–
0.625 km (w = 20× 2−j km). The vertical axis represents altitude over the range 0–40 km
and the point representing each wavelet component is plotted at the altitude of the cen-
tre of the wavelet. The left hand graph (figure 2 (a)) is for a diagonal prior covariance
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B = 25 I K2. The information gain per component corresponding to a hypothetical mea-
surement by which all components of the profile are determined to a standard deviation
precision of 1 K is 2.35 bits. For comparison this value is shown by a vertical dotted line.

The right hand graph is for the prior covariance used by Huang and Purser (1996).
They assumed an exponential prior covariance with a width varying linearly from 3 km at
8 km altitude to 8 km at 30 km (values read from their figure 2). With a uniform standard
deviation of 5 K at all altitudes, this is approximated in units of K2 by

[B]ij = 25 exp

(
−

|i− j|

2 + 0.1(i+ j)

)
(35)

The tropospheric information gain for IASI is very much greater than that for the
ideal radiometer model described in section 5. This is to be expected as the ideal model
includes only 10 measurements, and, without prior information, these would allow only
10 wavelet components of the atmospheric profile to be determined. Wavelet levels 0–2,
together with the profile average, include 8 values. Assuming that these levels are better
determined by the measurements than those requiring higher resolution, there is very
little information left from the measurements for levels 3–5. The effect of correlation in
the prior covariance matrix is shown by the increase in the information gain in figure 2 (b)
compared with 2 (a). (The prior covariance matrices for (a) and (b) have equal diagonal
elements, but that for (b) described by equation 35 includes correlation elements.)

10. Conclusions

The performance of atmospheric sounding radiometers may be described through
their ability to reliably detect perturbations of the atmospheric temperature profile in
the form of Haar wavelets. Haar functions have zero mean value and may have any desired
half-width and altitude so that they are ideally suited to analysing the resolution of a
radiometer as a function of altitude. Two scenarios have been considered:

1. The perturbation is to be detected against an unperturbed atmosphere. In this case
the probability of detection depends on the Mahalanobis distance.

2. The specific perturbation is to be detected against a randomly perturbed atmosphere.
In this case the average information gain is given by Shannon’s entropic information.
A multiresolution wavelet analysis allows the total information gain to be distributed
over altitude and resolution.

IASI has been shown to have a 95% probability of detecting perturbations in the tropo-
sphere up to 7.5 km altitude with half width 1 km and amplitude 0.9 K. An ideal model
radiometer, similar in performance to the AMSU, required a perturbation with half width
2.5 km and amplitude 6 K to achieve the same probability of detection.

Appendix A

Notation

Recently there has been an attempt to introduce a unified notation in atmospheric
and oceanic data assimilation (Ide et al. 1997). I have tried to follow this as far as
practicable, but conflicts arise with other well established notations, notably R for the
resolution matrix and H for entropy and entropic information. Major notation used in
this paper is summarised in table 1.
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TABLE 1. Notation

Symbol Dimen- Description
sion

A M ×M Post measurement covariance of x
B M ×M Covariance of prior estimate
e N Measurement + model error vector
E N ×N Covariance of e
K N ×M Linearised forward model coefficients (Jacobian matrix)

NM (· · ·) 1 Normal probability distribution (equation 4)
x M Atmospheric state vector
xa M Post-measurement (analysis) estimate of x
xb M Prior (base) estimate of x
y N Vector of radiance measurements

G 1 Kullback-Leibler information
H 1 Shannon’s entropic information gain
H M ×M Information gain matrix

HW M ×M Multiresolution information gain matrix
R M ×M Resolution matrix
V M ×M Orthogonal wavelet transformation matrix
∆2 1 Mahalanobis distance

Appendix B

Floyd profile

Radiative transfer calculations for the IASI instrument (Diebel et al. 1996) were
based on the fast radiative transfer model RTIASI developed by the European Centre
for Medium Range Forecasting (Matricardi and Saunders 1999). The 43 pressure levels
of this model are listed in table 2. The calculation of the temperature derivatives which
form the Jacobian matrix K were based on the ‘Floyd’ profile defined in this table.
This profile is that illustrated in Prunet et al.’s (1998) figure 2 for latitude 54 N. The
matrix KTE−1K was interpolated onto the tabulation altitudes 1–64 as described in
section 5 (b).

Appendix C

Haar wavelets

Haar wavelets were introduced by Haar (1910) and are described in many text books
such as Burrus and Gopinath (1998). Define the components of the M -dimensional Haar
source vector v as

vi =


a for 0≤ i <M/2

−a for M/2≤ i <M

0 otherwise

(C.1)

with M = 2L, an integer power of two, and a= 1/
√
M so that

∑M−1
i=0 |vi|

2 = 1. (In this
appendix subscripts indicate vector components numbered from 0.) Define scaled and
translated wavelets as

v
(j,k)
i = 2j/2v(2ji−Mk) for i= 0, 1, . . . , M − 1 (C.2)

where j is the level (scale) index, k the translation index and the factor 2j/2 maintains
normalisation. v(j,k) is non-zero only over a altitude range from kh(j) to (k + 1)h(j) where
h(j) = 2L−jh and h is the tabulation interval.
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TABLE 2. Floyd profile

pressure altitude temperature water vapour ozone
(hPa) (tabulation (K) (ppm) (ppm)

intervals)

1 0.10 103.30 230.93 4.26 0.68
2 0.29 91.38 249.66 4.27 1.44
3 0.69 81.67 265.16 4.27 2.38
4 1.42 73.59 259.12 4.16 3.71
5 2.61 66.77 252.38 3.95 5.20
6 4.41 60.90 242.04 3.67 5.91
7 6.95 55.80 234.14 3.42 5.92
8 10.37 51.32 230.02 3.07 5.63
9 14.81 47.33 227.72 3.75 5.21

10 20.40 43.74 225.78 4.12 4.62
11 27.26 40.49 223.96 4.00 3.89
12 35.51 37.53 222.11 4.02 3.12
13 45.29 34.81 220.18 4.02 2.43
14 56.73 32.29 220.10 4.02 1.90
15 69.97 29.94 221.21 4.02 1.46
16 85.18 27.73 221.54 4.02 1.01
17 102.05 25.71 221.09 4.05 0.70
18 122.04 23.71 220.65 3.80 0.46
19 143.84 21.86 221.78 4.22 0.31
20 167.95 20.13 223.13 3.91 0.22
21 194.36 18.49 223.09 3.33 0.17
22 222.94 16.96 223.39 9.44 0.13
23 253.71 15.51 225.00 12.27 0.11
24 286.60 14.14 227.50 5.73 0.09
25 321.50 12.86 230.03 35.74 0.09
26 358.28 11.64 234.58 162.29 0.08
27 396.81 10.50 237.96 158.48 0.07
28 436.95 9.42 240.30 348.90 0.07
29 478.54 8.40 245.23 444.78 0.06
30 521.46 7.44 249.67 656.51 0.06
31 565.54 6.53 253.82 880.67 0.06
32 610.60 5.67 258.11 1141.42 0.06
33 656.43 4.86 262.28 1265.48 0.05
34 702.73 4.10 265.80 1079.04 0.05
35 749.12 3.38 268.52 1068.50 0.05
36 795.09 2.72 270.80 1467.77 0.05
37 839.95 2.10 272.98 2666.07 0.05
38 882.80 1.54 274.49 5494.70 0.05
39 922.46 1.05 277.00 7616.39 0.05
40 957.44 0.63 279.98 7727.12 0.05
41 985.88 0.31 282.05 7803.32 0.05
42 1005.43 0.09 283.33 7802.74 0.05
43 1013.25 0.00 283.83 7759.24 0.05

Let v
(0)
i = a for i= 0, 1, . . . , M − 1. The set of M vectors

v(0), v(0,0), v(1,0), v(1,1), v(2,0), v(2,1), v(2,2), v(2,3), v(3,0), . . .

. . . , v(L−1,0), v(L−1,1), . . . , v(L−1,M/2−1)

(C.3)

is a complete orthonormal set which may form the columns of an orthogonal matrix V.
(Note that at level j, there are 2j translated wavelets so that V has 1 + 1 + 2 + 22 +
· · ·+ 2L−1 = 2L =M columns.) The unnormalised Haar wavelet vectors of dimension
M = 8 are shown in table 3. The extension to higher dimensions is obvious.
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TABLE 3. Haar wavelets of dimension 8

(unnormalised)

Level 0 Level 1 Level 2

1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1

Appendix D

Entropic information and principal component analysis

Apart from a constant, the entropic information Ha associated with a multivariate
normal distribution NM(x − xa,A) may be written as a sum over the eigenvalues λk of
A

Ha =−
1

2
log |A|=−

1

2

M∑
k=1

log λk (D.1)

If uk is the eigenvector∗ and vi is the wavelet forming the i th column of the orthogonal
wavelet transform matrix V, equation 34 implies

Ha =−
1

2

M∑
i=1

M∑
k=1

(vi · uk)2 log λk (D.2)

The information associated with each eigenvalue contributes an amount to the i th compo-
nent of a multiresolution information analysis proportional to the square of the projection
of the corresponding eigenvector onto the i th wavelet.

A link may be made between Prunet et al.’s (1998) principal component analysis of
their matrix A′ = B−1/2AB−1/2 and the entropic information gain H . Writing H as a
sum over the eigenvalues λk of A′

H = −
1

2
tr log

(
B−1/2AB−1/2

)
(D.3)

=
1

2

∑
i,k

[U]2ik(− log λk) (D.4)

Here [U]ik, i= 1, 2, . . . , M are the components of the k th eigenvector of A′. Since∑
i[U]2ik = 1, the coefficient [U]2ik is that fraction of the information associated with the

k th eigenvector which is attributable to the altitude corresponding to index i. The max-
imum value for λk is 1 indicating no information gain. Prunet et al. discard eigenvectors
with eigenvalues greater than a threshold of 0.9. Define ck = 0 for λk > 0.9 and ck = 1
otherwise, then the components of Prunet et al.’s ‘integrated eigenvector’ IEV are

IEVi =
∑
k

ck[U]2ik (D.5)

These components satisfy
∑
i IEVi =K, where K is the number of retained eigenvectors.

The i th component is referred to as the ‘normalised resolution’ at altitude i in Prunet

∗ The principal components are the independent random variables uk · x with variances λk.
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et al.’s figures 6 and 9. The usefulness of the IEV as a measure of resolution depends on
the assumption that the discarded eigenvectors (λk > 0.9) have a finer vertical structure
than those retained. In general this appears to be true as, although figure 5 of Prunet
et al. referring to the IASI instrument does not show discarded eigenvectors, it does
show a systematic decrease in the scale of the structure with increasing eigenvalues. To
interpret the IEV in absolute terms, it is necessary to examine the scale of the finest
structure in the retained eigenvectors.
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